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The selL4 Device Driver Framework O

Framework to provide interfaces and protocol for writing
performant device drivers as selL4 user level programs.

Write l T Read

Fewer privileges,
strong fault

containment
IP Driver
Stack
- IP Drlver? File ?

Stack System

g More system
calls Insecure

sDDF, Sep'23 © Lucy Parker 2022 CC BY 4.0 UNSW

vvvvvv




What Is The sDDF? Oz

« Currently focused on networking systems
* Implemented on top of the selL4 Microkit
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Design |
Driver doesn’t need

« Driver model uses 3 different memory regions access to Data

* Notifications signal updates to these regions
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Transport Layer Transmit used: w

Buffers with data
available for transmit

» Lock free, bounded queues _
Transmit free:

 Single producer, single consumer 5 Cree B
» 2 queues per direction re-use
« Zero copy
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Manipulate
gqueue sizes to
limit throughput

Device sharing

Copies data from shared
data region to the clients AS

Different
implementations for
different policies

TX 3% Driver

«3#

RX 3
Just responds to > Clients have
ARP: Address 3 virtualised MAC
Resolution addresses
Protocol
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Performance
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Set up

« Client just echoes packets
 [Pbench sends UDP - _
Read | |} Write

packets and measures

throughput and latencies .
A IP Driver
* Idle thread counts cycles to 4 B RYPYIX

calculate CPU utilisation

MUX
IP Stack TX 3 \ DI’IVGI’
<« Copy «» MUX /'
Ki RX §
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<:MI> Load
Generator

Split across 4
different
machines to
achieve
desired load
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sDDF vs Linux

Achieved throughput (Mb/s)
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Multi-client Performance
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Set u P Priorities: o-m

Driver > Tx Mux > Rx Mux >
Copier A, Copier B > Client A, Client B

> Policy: react to the
- Copy3<> client that signalled it

Mfl>J<X3\ Dri
-> river
<->Copy3<-> MUX / " 3 -
ARP RX 3

3 e Two separate

ipbench instances
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Performance
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Achieved throughput (Mb/s)
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Echo servers:
equal priorities
equal queue sizes
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Set up O =

Priorities:
Driver > Tx Mux > Rx Mux >
< . Copier A> Client A> Copier B > Client B
__—
> Driver
_

Limited to 16 ]
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Performance

Achieved throughput (Mb/s)
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CPU Utilisation

O =

Echo servers:
Client A> Client B
Client B RxUQ: 16

The same multiplexer!
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Set up

Priorities: o-m
Driver > Tx Mux > Rx Mux >
Copier A > Client A > Copier B > Client B

>
-« Copy3<'> \
MUX

+ 00 TX 3%

'
.:
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Limitedto 16 ]
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Performance O
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Set up
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O =

Priorities:
Driver > Tx Mux > Rx Mux >
Copier A > Client A > Copier B > Client B

MUX

TX 3%

MUX /
RX 3

Limit client B to T00Mbps using a time
window of 1 millisecond
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Performance O
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Multi-core
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Performance
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Achieved throughput (Mb/s)
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Multi-client, Single Core O
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Multi-client, Multi-core
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Echo servers with
extra work

Equal priorities,
Separate cores.
Round robin TX MUX

CPU Utilisation
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So it performs... but how do
we know it works?
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Verification story
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SPIN is verifying
communication
protocols

SMT Solvers will
verify individual
components

O =

Drivers written
in Pancake

IOMMU support
in the works
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Takeaways O

« Simple design outperforms Linux

« Simple, isolated multiplexers do not impede performance

* Inner policies depend on greater system design

« We can manipulate queue sizes to implement different policies
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Further Work O =

« Multi-core performance needs further investigation.

« Could we outperform Linux user-space frameworks too?

« Currently working on other device classes: storage, i2c, driver VMs etc.
 Investigate IOMMU/SMMU support

« Verification
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Thank you
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Limiting Tx Queues (single client) O
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Single Core Round Trip Times
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