School of Computer Science & Engineering
Trustworthy Systems Group
UNSW

SYDNEY

Australia’s
Global
University

The selL4 Device Driver
Framework

Lucy Parker %

lucy.parker@student.unsw.edu.au

The selL4 Device Driver Framework O

Framework to provide interfaces and protocol for writing
performant device drivers as selL4 user level programs.

Write l T Read

Fewer privileges,
strong fault

containment
IP Driver
Stack
- IP Drlver? File ?

Stack System

g More system
calls Insecure

sDDF, Sep'23 © Lucy Parker 2022 CC BY 4.0 UNSW

vvvvvv

What Is The sDDF? Oz

« Currently focused on networking systems
* Implemented on top of the selL4 Microkit

Write

Server % Driver IRQ

3 3 Y — Event based
PR— driver model
Read Rx

Transport Asynchronous

communication via

’5ﬂ4 shared memory and
notifications

J

sDDF, Sep'23 © Lucy Parker 2022 CC BY 4.0 UNSW

vvvvvv
[l

Design |
Driver doesn’t need

« Driver model uses 3 different memory regions access to Data

* Notifications signal updates to these regions

Server Driver

E E

Control

©
wp
(O
©
©
wp
)
=

Data

sDDF, Sep'23 © Lucy Parker 2022 CC BY 4.0 UNSW

=3
2 SYDNEY

Transport Layer Transmit used: w

Buffers with data
available for transmit

» Lock free, bounded queues _
Transmit free:

 Single producer, single consumer 5 Cree B
» 2 queues per direction re-use
« Zero copy

Driver

head
— tail

, head =
\ N\
ZEZ 4 4

Server

SDDF, Sep'23 © Lucy Parker 2022 CC BY 4.0 a8s) UNSW
as

vvvvvv

Manipulate
gqueue sizes to
limit throughput

Device sharing

Copies data from shared
data region to the clients AS

Different
implementations for
different policies

TX 3% Driver

«3#

RX 3
Just responds to > Clients have
ARP: Address 3 virtualised MAC
Resolution addresses
Protocol
SDDF, Sep'23 © Lucy Parker 2023 CC BY 4.0 UNSW

o]

Performance

sDDF, Sep'23

© Lucy Parker 2023 CC BY 4.0

Set up

« Client just echoes packets
 [Pbench sends UDP - _
Read | |} Write

packets and measures

throughput and latencies .
A IP Driver
* Idle thread counts cycles to 4 B RYPYIX

calculate CPU utilisation

MUX
IP Stack TX 3 \ DI’IVGI’
<« Copy «» MUX /'
Ki RX §

eselg

sDDF, Sep'23

O =

<:MI> Load
Generator

Split across 4
different
machines to
achieve
desired load

<:Iﬁﬁ[;> Load
Generator

© Lucy Parker 2023 CC BY 4.0 UﬂNﬁW

sDDF vs Linux

Achieved throughput (Mb/s)

8 sDDF, Sep'23

1,000 ~ 100%
750 75%
500 50%
250 25%

0 0%
200 400 600 800 1,000

Requested throughput (Mb/s)

® seld @ sel4 Linux Linux

© Lucy Parker 2023 CC BY 4.0

CPU utilisation

UNSW

SYDNEY

Multi-client Performance

=)
T

- UNSW
sDDF, Sep'23 © Lucy Parker 2023 CC BY 4.0 [#&5) UINOV

Set u P Priorities: o-m

Driver > Tx Mux > Rx Mux >
Copier A, Copier B > Client A, Client B

> Policy: react to the
- Copy3<> client that signalled it

Mfl>J<X3\ Dri
-> river
<->Copy3<-> MUX / " 3 -
ARP RX 3

3 e Two separate

ipbench instances

i sDDF, Sep23 © Lucy Parker 2023 CC BY 4.0 UNSW

Performance

11

Achieved throughput (Mb/s)

500 100%

400

75%
300

50%
200

25%
100

0 0%
100 200 300 400 500

Requested throughput (Mb/s)

® ClientA @ ClientB @ CPU Utilisation

sDDF, Sep'23

CPU Utilisation

O =

Echo servers:
equal priorities
equal queue sizes

© Lucy Parker 2023 CC BY 4.0 UNSW
e

Set up O =

Priorities:
Driver > Tx Mux > Rx Mux >
< . Copier A> Client A> Copier B > Client B
__—
> Driver
_

Limited to 16]

12 sDDF, Sep'23 © Lucy Parker 2023 CC BY 4.0 UNSW

Performance

Achieved throughput (Mb/s)

13

500 100%

400
75%

300

50%
200

25%

100

0 0%
100 200 300 400 500

Requested throughput (Mb/s)

® ClientA € ClientB @ CPU Utilisation

sDDF, Sep'23

CPU Utilisation

O =

Echo servers:
Client A> Client B
Client B RxUQ: 16

The same multiplexer!

© Lucy Parker 2023 CC BY 4.0 UNSW

vvvvvv

o]

Set up

Priorities: o-m
Driver > Tx Mux > Rx Mux >
Copier A > Client A > Copier B > Client B

>
-« Copy3<'> \
MUX

+ 00 TX 3%

'
.:

14 sDDF, Sep'23

Limitedto 16]

© Lucy Parker 2023 CC BY 4.0 UNSW
e

vvvvvv

Performance O

500 100%
Echo servers:
@ 400 250, Client A> Client B
§ (0]
S = Client B RxUQ: 16
g .. & TxuQ:16, TxFQ: 16
> o = .
£ 200 > The same multiplexer
T S
K 25%
5 100
<
0 0%
100 200 300 400 500

Requested throughput (Mb/s)

@® ClientA @ ClientB @ CPU Utilisation

15 sDDF, Sep'23 © Lucy Parker 2023 CC BY 4.0 UNSW

Set up

16 sDDF, Sep'23

O =

Priorities:
Driver > Tx Mux > Rx Mux >
Copier A > Client A > Copier B > Client B

MUX

TX 3%

MUX /
RX 3

Limit client B to T00Mbps using a time
window of 1 millisecond

© Lucy Parker 2023 CC BY 4.0 UNSW
e

vvvvvv

Performance O

500 100%

o 400
el 75%
=
é 300 §
c [\]
g> 50% 2
o 35
£ 200 >
E o
Q0 25%
£ 100
<

0 0%

100 200 300 400 500

Requested throughput (Mb/s)
@® ClientA @ ClientB @ CPU Utilisation

17 sDDF, Sep'23 © Lucy Parker 2023 CC BY 4.0 UNSW

Multi-core

18 sDDF, Sep'23 © Lucy Parker 2023 CC BY 4.0 UNSW

Performance

19

Achieved throughput (Mb/s)

sDDF, Sep'23

1,000 200%
750 150%
500 100%

—e—-—"
250 50%
0 0%
200 400 600 800 1,000
Requested throughput (Mb/s)
Linux Linux @ sDDF 4 SMP (Single Core) SMP (Two Cores)

© Lucy Parker 2023 CC BY 4.0

CPU Utilisation

UNSW

SYDNEY

Multi-client, Single Core O

500 100% .
Echo servers with
extra work

—~ 400 o) . g
2 P 8% Equal priorities
=
g_ 300 é
2 50% 2
o 5
g 200 -
3 &
'_GE) 25%
£ 100

0 0%

100 200 300 400 500

Requested throughput (Mb/s)
® ClientA @ ClientB @ CPU Utilisation

20 sDDF, Sep'23 © Lucy Parker 2023 CC BY 4.0 UNSW
o]

Multi-client, Multi-core

500 250%

400

300 150%

200 100%

50%

Achieved throughput (Mb/s)

100

0 0%
100 200 300 400 500

Requested throughput (Mb/s)
® ClientA @ ClientB @ CPU Utilisation

21 sDDF, Sep'23

O =

Echo servers with
extra work

Equal priorities,
Separate cores.
Round robin TX MUX

CPU Utilisation

© Lucy Parker 2023 CC BY 4.0 UNSW
A

So it performs... but how do
we know it works?

o=
T

sDDF, Sep'23 © Lucy Parker 2023 CC BY 4.0 UNSW

Verification story

23 sDDF, Sep'23

SPIN is verifying
communication
protocols

SMT Solvers will
verify individual
components

O =

Drivers written
in Pancake

IOMMU support
in the works

© Lucy Parker 2023 CC BY 4.0 UNSW

vvvvvv

Takeaways O

« Simple design outperforms Linux

« Simple, isolated multiplexers do not impede performance

* Inner policies depend on greater system design

« We can manipulate queue sizes to implement different policies

=
Y

24 sDDF, Sep'23 © Lucy Parker 2023 CC BY 4.0 UNSW
G

A

Further Work O =

« Multi-core performance needs further investigation.

« Could we outperform Linux user-space frameworks too?

« Currently working on other device classes: storage, i2c, driver VMs etc.
 Investigate IOMMU/SMMU support

« Verification

25 sDDF, Sep'23 © Lucy Parker 2023 CC BY 4.0 UNSW
el

A

26

Thank you

sDDF, Sep'23

© Lucy Parker 2023 CC BY 4.0

Limiting Tx Queues (single client) O

1000

i~ 750
Q.
Ke]
=
5
Q
L

g 500
2
£
'_
O
@
2

S 250
<

0

10 20 30 40 50 60

Number of transmit buffers

27 sDDF, Sep'23 © Lucy Parker 2023 CC BY 4.0 UNSW
a5

Single Core Round Trip Times

28

sDDF, Sep'23

Median RTT

10000

7500

5000

2500

100%

_ -
— g 75%

- “’
47 - S
" 50% 2
-~ E
el 2
P d
R4 ©
» 25%
— o o —o— - ¢ — 7
0%
200 400 600 800 1,000
Requested throughput (Mb/s)
® sel4d @ sels Linux Linux

© First Last 2022, CC BY 4.0 .

O =

UNSW

SYDNEY

