
School of Computer Science & Engineering

Trustworthy Systems Group

seL4 Microkit
Ivan Velickovic
i.velickovic@unsw.edu.au



© Ivan Velickovic 2023, CC BY 4.0

So, what is Microkit?
• An operating systems framework for building systems on seL4.
• Primary motivation is to lower the barrier the entry to developing on seL4.
• While making seL4 easier to use, we still want to uphold performance, 

security, and memory efficiency.
• This means providing few, minimal, abstractions over seL4 primitives.

• Targeted at cyber-physical embedded systems, with a static architecture.

1 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Why the name change?
• The “Core” in seL4 Core Platform makes it look like the only framework to 

build seL4 systems on which is not true.
• For those already referring to “seL4 Core Platform”:

• sed -i 's/sel4cp/microkit/g'
• Just kidding…

• If you spot anything not renamed yet that should be, please let us know! 
File an issue on GitHub or post on the mailing list.

2 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Abstractions – Protection Domains
• An environment for executing 

user-level code.
• Single-threaded with its own 

address-space.
• In seL4 terms, each PD 

contains its own CSpace, 
VSpace, and TCB.

• By default, all it can execute is its 
own code and nothing else.

• Execution is event-based.

3 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Abstractions – Memory Regions
• MRs represent a contiguous block of physical 

memory.
• Regular memory.
• Device memory (for implementing device 

drivers).
• May be mapped into one or more PDs.

• Allows for shared buffers between PDs.
• Enables zero-copy communication.
• Specify caching attributes and permissions.

4 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Abstractions – Communication Channels
• Allows for bi-directional communication between a pair of PDs.
• Allows for synchronous and asynchronous communication.
• Notifications are used for asynchronous communication:

• A PD “notifies” another to signal that some event has occurred.
• Interrupts from hardware are also delivered as notifications.

• Protected Procedure Calls (PPC) are used for synchronous 
communication:

• Enables a PD to execute code in a different PD.
• For example, a client invoking some service in a server that returns a 

result.

5 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Abstractions – Summary

6 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Microkit design
• All the PDs, MRs, and CCs are 

described in a System Description 
Format (SDF) written in XML.

• This is deliberate, it allows trivial 
parsing as well as auto-generation.

• In addition to the SDF, the Microkit tool 
expects the ELFs of all PDs in the 
system.

• It intentionally does not provide a 
build-system.

• Each PD is linked with 
libmicrokit.

• Microkit is distributed as an SDK.

7 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Status of Microkit
• After much discussion, the Microkit RFC has been approved by the seL4 

Foundation.
• Microkit is now an official seL4 project: github.com/seL4/microkit!
• Development over the past year includes:

• Limited dynamicism (stopping, restarting, late-loading PDs).
• Static architecture remains.

• New abstraction - virtual machines.
• Support for other architectures such as RISC-V and x86-64 and more 

hardware platforms.
• CapDL integration to (eventually) connect Microkit to existing seL4 proofs.
• An implemented verification story now exists.

• The process of upstreaming all the changes has started.
• You can follow the status of upstreaming here 
github.com/seL4/microkit/issues/61.

8 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

What’s next for Microkit?
• Development is most certainly not done!
• Enhancing the eco-system:

• Virtual Machine Monitor (VMM)
• Proper debugging support
• Performance profiling
• System visualisation tools

• Building a non-trivial example system 
using Microkit (PoS system).

9 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Virtual machines on Microkit
• Why?

• To avoid porting existing or implementing new 
device drivers for seL4.

• Invoking legacy software.
• Main goals:

• Secure and performant virtual machines.
• Lower the barrier to entry for using virtual 

machines with seL4.
• Having documentation and lots of examples is a priority!

10 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Virtual machines – VMM as a library
• A ”one-size fits all” VMM is not ideal.
• The library allows people to build their 

own VMM, with their own control-flow.
• Supports AArch64, RISC-V in-

progress.
• Examples of using the VMM library in 

C, Zig, and Rust already exist.
• Each of these is ~100-150 SLOC.
• About 2300 SLOC involved to boot 

a Linux guest with libvmm.

11 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Virtual machines – Pass-through devices
• The easiest way to get I/O in a 

virtual machine is “pass-through”.
• This gives the guest full access to 

a certain device.
• In Microkit, this is trivial to do by 

creating a memory region and 
mapping it into the virtual machine.

12 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Virtual machines – Device sharing

13 seL4 Summit, Sep’23

• We need to be able to share 
devices.

• Using and extending the sDDF
transport layer, we can allow 
native clients and other virtual 
machines to make use of the 
same device.

• sDDF allows us to transparently 
swap out a virtualised driver 
with a native driver.

• We are working towards 
graphics and networking 
support.



© Ivan Velickovic 2023, CC BY 4.0

Virtual machines - Summary
• Sufficient for development and experimentation, but not production ready 

yet.
• Proper performance and security analysis needed.
• Highly-used features such as SMP guests and virtIO are still in-

progress.
• Not just for Microkit! The project should be able to be used in other seL4 

environments.
• The library depends on few seL4 invocations.

14 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Proper debugging
• When running on real-hardware, 

using only printf debugging is 
quite limiting.

• Adding GDB support to Microkit
to provide the ability to:

• set breakpoints (both in 
software and hardware).

• single-step code.
• inspect kernel state, such as 

dumping a CSpace.
• Also want to provide stack 

traces for faults, such a virtual 
memory fault.

• Mostly a work-in-progress at this 
stage.

15 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

A performance profiler
• Current profiling on seL4 is limited.

• Good for getting an idea of cache misses, kernel entries etc.
• For non-trivial systems, we need a more systematic way of tracking 

performance.
• Goal is to have a statistical sampling user-level profiler to track 

performance of each PD in the system.
• Allow analysis of data by existing tools such as perf.
• Export data over serial, network, block.
• One potential problem is that kernel changes are required, conflicting with 

simply attaching the profiler to a deployed and running system.
• Again, mostly a work-in-progress at this stage.

16 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Community input
• As the main developers of Microkit, there are only so many use-cases we 

have considered.
• This means we are bound to miss some use-cases and there may still 

be holes.
• While we do try to give users of Microkit the best user experience, there 

will almost certainly be gaps and mistakes as the project matures.
• Ranging from documentation, to error messages, to workflow, etc.

• It is vital for the community using our software to tell us what needs 
improving!

17 seL4 Summit, Sep’23



© Ivan Velickovic 2023, CC BY 4.0

Thanks! Questions?

18 Title, Aug'22


