
Incremental Assurance for a Rust
Network Stack
Galois Inc.

Michal Podhradsky, Tiago Ferreira, Ben Hamlin, Mike Dodds, Mike Beynon

* This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author and
should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Distribution Statement A: Approved for public release. Distribution is unlimited.

© 2023 Galois, Inc.2Distribution Statement A: Approved for public release. Distribution is unlimited.

© 2023 Galois, Inc.3

Motivation
● Building a high assurance network stack from scratch is hard

○ complex protocols

○ needs to be fast and feature complete

○ hard to verify (timeouts, edge cases, …)

● Can we instead make an existing code high assurance?

○ large codebases (Linux network stack)

○ difficult to reason about (lwip, picotcp, …)

Distribution Statement A: Approved for public release. Distribution is unlimited.

© 2023 Galois, Inc.4

Motivation
● designed for embedded systems

● written in Rust

● well documented

● unit tests

● fuzz testing

● popular

● ran on seL4 before (Camkes)

Distribution Statement A: Approved for public release. Distribution is unlimited.

© 2023 Galois, Inc.5

Incremental assurance
● Prognosis

○ https://dl.acm.org/doi/abs/10.1145/3452296.3472938

○ automated closed-box learning and analysis of models of
network protocol implementations

○ model based verification of TCP protocol

● Kani Rust verifier

○ https://model-checking.github.io/kani/

○ symbolic execution

○ TCP protocol logic and packet format correctness
Distribution Statement A: Approved for public release. Distribution is unlimited.

https://dl.acm.org/doi/abs/10.1145/3452296.3472938
https://model-checking.github.io/kani/

© 2023 Galois, Inc.6

Prognosis
● An automated, closed-box tool for protocol inference.

● Based on Automata Learning, adapted for industry use.

Distribution Statement A: Approved for public release. Distribution is unlimited.

© 2023 Galois, Inc.7

Protocols as State Machines

Distribution Statement A: Approved for public release. Distribution is unlimited.

© 2023 Galois, Inc.8

The TCP State Machine

● Defined in RFC 9293.

● Defines how implementations should behave
according to the packets they receive.

● An idealised view that is often simpler than
what happens in reality.

● Hard to implement right – procedural code is
very different to graph-based automata.

Distribution Statement A: Approved for public release. Distribution is unlimited.

© 2023 Galois, Inc.9

The (real) Linux TCP State Machine

Distribution Statement A: Approved for public release. Distribution is unlimited.

© 2023 Galois, Inc.10

The smoltcp TCP State Machine

Distribution Statement A: Approved for public release. Distribution is unlimited.

© 2023 Galois, Inc.11

Protocol Violations
1. RST on repeated SYN: smoltcp fails to reset the connection when

repeated SYN packets are sent. It instead silently drops the repeated
packets.

2. Data carrying SYN: The specification allows for data transmission on
synchronize packets. This data should be buffered and delivered after
the handshake completes. smoltcp drops the data instead.

3. Sending RST not resetting state: When smoltcp sends a reset
packet, it does not reset its own state, instead resetting only the
client. This is has so far not been manifested as an issue due to
smoltcp’s collapsed states.

Distribution Statement A: Approved for public release. Distribution is unlimited.

© 2023 Galois, Inc.12

Kani
● Developed by Amazon, similar to Crux-MIR - https://crux.galois.com

● Performs complete model checking of program properties through symbolic
execution.

● Allows us to prove correctness of finer details such as packet handling.

● Runs in a CI environment ensuring that proofs stay valid on every new commit.

● So far, we have proved the packet parsing and construction parts of TCP.

Distribution Statement A: Approved for public release. Distribution is unlimited.

https://crux.galois.com

© 2023 Galois, Inc.13

Summary & next steps
● Prognosis

○ 5 protocol violations found
○ responsible disclosure, patches in the works

● Kani
○ proven round-trip property of TCP packets
○ Continuous Verification

● Future work:
○ apply Prognosis to other protocols (DHCP, DNS, TLS, …)
○ increase coverage with symbolic execution (ideally 100%)
○ the go-to network stack for seL4?

Distribution Statement A: Approved for public release. Distribution is unlimited.

Distribution Statement A: Approved for public release. Distribution is unlimited.

