
School of Computer Science & Engineering 

Trustworthy Systems Group

In and Around LionsOS 
Ivan Velickovic 
i.velickovic@unsw.edu.au



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Outline

2



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Outline
• Overall design of LionsOS and it’s fundamental parts.

2



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Outline
• Overall design of LionsOS and it’s fundamental parts.
• What progress have we made in the past year?

2



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Outline
• Overall design of LionsOS and it’s fundamental parts.
• What progress have we made in the past year?
• What do we have now?

2



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Outline
• Overall design of LionsOS and it’s fundamental parts.
• What progress have we made in the past year?
• What do we have now?
• ‘Unique’ problems and how we’re solving them.

2



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Outline
• Overall design of LionsOS and it’s fundamental parts.
• What progress have we made in the past year?
• What do we have now?
• ‘Unique’ problems and how we’re solving them.
• Demo.

2



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

LionsOS design
• You start with a clean slate. The system designer chooses what 

components, I/O systems, client programs to have.

3



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Microkit

4



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Microkit
• Programming model is event based.

4



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Microkit
• Programming model is event based.
• Asynchronous or synchronous communication.

4



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Microkit
• Programming model is event based.
• Asynchronous or synchronous communication.
• Microkit lowers the bar to seL4 but does not include drivers or other higher-

level OS services.

4



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Microkit - status

5



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Microkit - status
• Multiple releases in the past year 

• 1.3.0 (Jul’24), 1.4.0 (Aug’24), 1.4.1 (Aug’24).

5



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Microkit - status
• Multiple releases in the past year 

• 1.3.0 (Jul’24), 1.4.0 (Aug’24), 1.4.1 (Aug’24).
• Most effort around implementing/upstreaming requested features: 

• Hypervisor/Virtual Machine support. 
• Architecture support (RISC-V merged, x86 still in-progress). 
• More platform support. 
• Various fixes, quality-of-life improvements.

5



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

I/O – seL4 Device Driver Framework

6



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

I/O – seL4 Device Driver Framework
• Designed for performance, modularity 

and simplicity.

6



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

I/O – seL4 Device Driver Framework
• Designed for performance, modularity 

and simplicity.
• Standard protocol/interface between 

components for each device class. 
• LionsOS components (e.g file 

systems) are based off these 
interfaces.

6



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

I/O – seL4 Device Driver Framework
• Designed for performance, modularity 

and simplicity.
• Standard protocol/interface between 

components for each device class. 
• LionsOS components (e.g file 

systems) are based off these 
interfaces.

6



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

I/O - sDDF status

7



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

I/O - sDDF status
• Last year we had: 

• Network 
• Timer

7



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

I/O - sDDF status
• Last year we had: 

• Network 
• Timer

• In the past year we’ve added: 
• Block (e.g MMC) 
• UART (non-DMA) 
• I2C 
• Audio

7



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

I/O - sDDF status
• Last year we had: 

• Network 
• Timer

• In the past year we’ve added: 
• Block (e.g MMC) 
• UART (non-DMA) 
• I2C 
• Audio

• And have made various progress on: 
• Graphics (2D) 
• GPIO 
• Pinmux 
• Clock

7



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

I/O

8



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

I/O
• In general, anything to the left of the virtualiser is not part of sDDF and 

would be considered part of the OS. 
• For example, file systems are a ‘client’ of the block sub-system.

8



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

I/O
• In general, anything to the left of the virtualiser is not part of sDDF and 

would be considered part of the OS. 
• For example, file systems are a ‘client’ of the block sub-system.

• Primarily have been focused on sDDF I/O design. 
• Starting to design higher-level I/O layers, such as file systems.

8



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

I/O
• In general, anything to the left of the virtualiser is not part of sDDF and 

would be considered part of the OS. 
• For example, file systems are a ‘client’ of the block sub-system.

• Primarily have been focused on sDDF I/O design. 
• Starting to design higher-level I/O layers, such as file systems.

8



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Virtualisation
• Main updates are that: 

• RISC-V support is now working. 
• Although it depends on seL4 changes that 

are yet to be mainlined. 
• Plan to create an RFC and start 

upstreaming the changes. 
• virtIO devices. 

• We now have virtIO implementations for 
console, block, network and audio devices. 

• Multi-core guests are being worked on 
as well.

9



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Static architecture, but not a static system

10



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Static architecture, but not a static system
• When people hear ‘static architecture’, they may think you 

setup the system and then you can’t touch it anymore.

10



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Static architecture, but not a static system
• When people hear ‘static architecture’, they may think you 

setup the system and then you can’t touch it anymore.
• But, there is a spectrum.

10



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Static architecture, but not a static system
• When people hear ‘static architecture’, they may think you 

setup the system and then you can’t touch it anymore.
• But, there is a spectrum.
• Two approaches to address this: 

• Template protection domains. 
• Introducing more dynamism into sDDF, specifically with 

hot-plugging. 
• Able to eject/insert MMC cards in a live system. 
• Yet to apply hot-plugging to other device classes.

10



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

What have we made so far?

11



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

What have we made so far?
• Reference system, aka Kitty.

11



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

What have we made so far?
• Reference system, aka Kitty.
• Web server, serving the seL4 website (https://sel4.systems).

11



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Reference system (Kitty)

12



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lessons learned

13



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lessons learned
• Friction is too high, need to still lower the barrier to 

entry. 
• Combining various components and I/O sub-

systems in a single system does not scale well.

13



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lessons learned
• Friction is too high, need to still lower the barrier to 

entry. 
• Combining various components and I/O sub-

systems in a single system does not scale well.
• With a static architecture, some of the run-time 

complexity in a typical OS shifts to build-time in 
LionsOS.

13



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – driver VMs

14



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – driver VMs
• Re-use drivers from Linux via a 

virtual machine. 
• ...where the concessions to 

performance and security 
are acceptable. 

• Helps prototype without 
writing a bunch of drivers.

14



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – driver VMs
• Re-use drivers from Linux via a 

virtual machine. 
• ...where the concessions to 

performance and security 
are acceptable. 

• Helps prototype without 
writing a bunch of drivers.

• Convert sDDF protocol to 
Linux system calls/APIs.

14



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – driver VMs
• Re-use drivers from Linux via a 

virtual machine. 
• ...where the concessions to 

performance and security 
are acceptable. 

• Helps prototype without 
writing a bunch of drivers.

• Convert sDDF protocol to 
Linux system calls/APIs.

• Currently, UIO drivers exist for 
the block and audio device 
classes.

14



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – driver VMs
• Re-use drivers from Linux via a 

virtual machine. 
• ...where the concessions to 

performance and security 
are acceptable. 

• Helps prototype without 
writing a bunch of drivers.

• Convert sDDF protocol to 
Linux system calls/APIs.

• Currently, UIO drivers exist for 
the block and audio device 
classes.

14



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – driver VMs

15



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – driver VMs
• Using multiple driver VMs 

presents a problem.

15



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – driver VMs
• Using multiple driver VMs 

presents a problem.
• Linux will attempt to initialise 

clocks/pinmux for the passed 
through device.

15



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – driver VMs
• Using multiple driver VMs 

presents a problem.
• Linux will attempt to initialise 

clocks/pinmux for the passed 
through device.

15



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – driver VMs
• Using multiple driver VMs 

presents a problem.
• Linux will attempt to initialise 

clocks/pinmux for the passed 
through device.

• Trap and emulate access to 
clocks/pinmux devices and rely 
on native drivers instead.

15



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – build time tooling

16



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – build time tooling
• Two aspects: 

• Managing the System Description Format 
(SDF) file to give to the Microkit tool. 

• Information flow from the design of the 
system to component code.

16



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – build time tooling
• Two aspects: 

• Managing the System Description Format 
(SDF) file to give to the Microkit tool. 

• Information flow from the design of the 
system to component code.

• Working on tools/libraries to allow creating 
LionsOS systems based on higher-level 
description.

16



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – build time tooling
• Two aspects: 

• Managing the System Description Format 
(SDF) file to give to the Microkit tool. 

• Information flow from the design of the 
system to component code.

• Working on tools/libraries to allow creating 
LionsOS systems based on higher-level 
description.

• Starting to receive internal use, still 
experimental.

16



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

System visualiser/editor

17



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – legacy layer

18



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – legacy layer
• Legacy and off-the-shelf libraries tend 

to expect some kind of ‘POSIX-like’ 
interface. 

• For example, our network file 
system uses an off-the-shelf library 
which expect certain POSIX APIs.

18



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – legacy layer
• Legacy and off-the-shelf libraries tend 

to expect some kind of ‘POSIX-like’ 
interface. 

• For example, our network file 
system uses an off-the-shelf library 
which expect certain POSIX APIs.

• ‘POSIX-like’ vs full POSIX 
• Support for blocking I/O that people 

are used to programming with such 
as read(), write(), send(). 

• Unlikely to have versions of fork() 
or exec().

18



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – legacy layer
• Legacy and off-the-shelf libraries tend 

to expect some kind of ‘POSIX-like’ 
interface. 

• For example, our network file 
system uses an off-the-shelf library 
which expect certain POSIX APIs.

• ‘POSIX-like’ vs full POSIX 
• Support for blocking I/O that people 

are used to programming with such 
as read(), write(), send(). 

• Unlikely to have versions of fork() 
or exec().

18



© Ivan Velickovic 2024, CC BY 4.0

Demo



© Ivan Velickovic 2024, CC BY 4.0

Demo
But, I lied



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Demo system

20



© Ivan Velickovic 2024, CC BY 4.0Title, Aug'22

Thanks! Questions?

21


