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Outline
• Overall design of LionsOS and it’s fundamental parts.
• What progress have we made in the past year?
• What do we have now?
• ‘Unique’ problems and how we’re solving them.
• Demo.
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LionsOS design
• You start with a clean slate. The system designer chooses what 

components, I/O systems, client programs to have.
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Microkit
• Programming model is event based.
• Asynchronous or synchronous communication.
• Microkit lowers the bar to seL4 but does not include drivers or other higher-

level OS services.
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Microkit - status
• Multiple releases in the past year 

• 1.3.0 (Jul’24), 1.4.0 (Aug’24), 1.4.1 (Aug’24).
• Most effort around implementing/upstreaming requested features: 

• Hypervisor/Virtual Machine support. 
• Architecture support (RISC-V merged, x86 still in-progress). 
• More platform support. 
• Various fixes, quality-of-life improvements.
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• Standard protocol/interface between 

components for each device class. 
• LionsOS components (e.g file 

systems) are based off these 
interfaces.
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I/O - sDDF status
• Last year we had: 

• Network 
• Timer

• In the past year we’ve added: 
• Block (e.g MMC) 
• UART (non-DMA) 
• I2C 
• Audio

• And have made various progress on: 
• Graphics (2D) 
• GPIO 
• Pinmux 
• Clock
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Virtualisation
• Main updates are that: 

• RISC-V support is now working. 
• Although it depends on seL4 changes that 

are yet to be mainlined. 
• Plan to create an RFC and start 

upstreaming the changes. 
• virtIO devices. 

• We now have virtIO implementations for 
console, block, network and audio devices. 

• Multi-core guests are being worked on 
as well.
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Static architecture, but not a static system
• When people hear ‘static architecture’, they may think you 

setup the system and then you can’t touch it anymore.
• But, there is a spectrum.
• Two approaches to address this: 

• Template protection domains. 
• Introducing more dynamism into sDDF, specifically with 

hot-plugging. 
• Able to eject/insert MMC cards in a live system. 
• Yet to apply hot-plugging to other device classes.
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What have we made so far?
• Reference system, aka Kitty.
• Web server, serving the seL4 website (https://sel4.systems).
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Reference system (Kitty)
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• Friction is too high, need to still lower the barrier to 

entry. 
• Combining various components and I/O sub-

systems in a single system does not scale well.
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Lessons learned
• Friction is too high, need to still lower the barrier to 

entry. 
• Combining various components and I/O sub-

systems in a single system does not scale well.
• With a static architecture, some of the run-time 

complexity in a typical OS shifts to build-time in 
LionsOS.
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Lowering friction – driver VMs
• Re-use drivers from Linux via a 

virtual machine. 
• ...where the concessions to 

performance and security 
are acceptable. 

• Helps prototype without 
writing a bunch of drivers.
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Lowering friction – driver VMs
• Using multiple driver VMs 

presents a problem.
• Linux will attempt to initialise 

clocks/pinmux for the passed 
through device.

• Trap and emulate access to 
clocks/pinmux devices and rely 
on native drivers instead.

15



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – build time tooling

16



© Ivan Velickovic 2024, CC BY 4.0seL4 Summit, Oct’24

Lowering friction – build time tooling
• Two aspects: 

• Managing the System Description Format 
(SDF) file to give to the Microkit tool. 

• Information flow from the design of the 
system to component code.
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Lowering friction – build time tooling
• Two aspects: 

• Managing the System Description Format 
(SDF) file to give to the Microkit tool. 

• Information flow from the design of the 
system to component code.

• Working on tools/libraries to allow creating 
LionsOS systems based on higher-level 
description.

• Starting to receive internal use, still 
experimental.
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System visualiser/editor
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Demo system
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Thanks! Questions?
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